JEE (Main) QUESTION PAPER

Time : 3 Hours

General Instructions :

- There are three subjects in the question paper consisting of Chemistry Q. no. 1 to 30. 1.
- This Paper is divided into two sections: 2.

• Section A Consists of 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

• Section B consist of 10 questions, Numerical Value Type Questions - In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

- There will be only one correct choice in the given four choices in Section A. For each question 4 marks will be awarded for correct 3. choice, 1 mark will be deducted for incorrect choice for Section A questions and zero mark will be awarded for not attempted question.
- 4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.

Chemistry

(3)

Section A

Which of the following acts as a strong Q. 1. reducing agent? (Atomic number: Ce = 58, Eu = 63, Gd = 64, Lu = 71)

(2) Će⁴⁺ (1) Lu^{3+}

(4) Eu^{2+} (3) Gd³⁺

- Q.2. Which of the following statements are correct about Zn, Cd and Hg?
 - They exhibit high enthalpy a. of atomization as the d-subshell is full.
 - b. Zn and Cd do not show variable oxidation state while Hg shows +I and +II.
 - c. Compounds of Zn,Cd and Hg are paramagnetic in nature.
 - d. Zn,Cd and Hg are called soft metals.

Choose the most appropriate from the options given below:

(1) b, c only	(2) a, d only
---------------	---------------

- (3) c, d only (4) b, d only
- Q. 3. The product A formed in the following reaction is

According to IUPAC system, the compound Q. 4. ΟH

(4)

+ _NH₃Cl +

named as :

- (1) Cyclohex-1-en-3-ol
- (2) Cyclohex-2-en-1-ol
- (3) Cyclohex-1-en-2-ol
- (4) 1-Hydroxyhex-2-ene
- Q. 5. Which of the following reaction is correct?

(1)
$$Har_2 \xrightarrow{\Delta} UV light Br_2$$

(2)
$$C_2H_5CONH_2 + Br_2 + NaOH \rightarrow C_2H_5CH_2NH_2 + Na_2CO_3 + NaBr + H_2O$$

(3)
$$CH_3CH_2CH_2NH_2 \xrightarrow{HINO_2, 0 C} H_2O$$

 $CH_3CH_2OH + N_2 + HCI$
 $CH_3 \xrightarrow{CH_3} \xrightarrow{CH_3}$

(4)
$$+$$
 HI $-$ I
The element baring the highest fit

O. 6. The element having the highest first ionization enthalpy is

(1) C	(2)	Al
(3) Si	(4)	Ν

Total Marks: 300

Cl

D.,

nor

UNIO

29th January Shift 2

- Q. 7. Given below are two statements:
 Statement I : Fluorine has most negative electron gain enthalpy in its group.
 Statement II : Oxygen has least negative electron gain enthalpy in its group.
 In the light of the above statements, choose the most appropriate from the options given below
 - (1) Statement I is false but Statement II is true.
 - (2) Both Statement I and Statement II are true.
 - (3) Both Statement I and Statement II are false.
 - (4) Statement I is true but Statement II is false.
- **Q. 8.** The ascending acidity order of the following H atoms is :

Q.9. Match List I with List II

List- I	List-II	
(Bio Polymer)	(Monomer)	
(a) Starch	(i) nucleotide	
(b) Cellulose	(ii) α-glucose	
(c) Nucleic acid	(iii) β-glucose	
(d) Protein	(iv) α-amino acid	

Choose the correct answer from the options given below :

- (1) a-ii, b-iii, c-i, d-iv (2) a-ii, b-i, c-iii, d-iv
- (3) a-iv, b-ii, c-i, d-iii (4) a-i, b-iii, c-iv, d-ii
- **Q. 10.** The correct IUPAC name of K_2MnO_4 is
 - (1) Potassium tetraoxidomanganese (VI)
 - (2) Potassium tetraoxidomanganate (VI)
 - (3) Dipotassium tetraoxidomanganate (VII)
 - (4) Potassium tetraoxopermanganate (VI)
- **Q.11.** Which one of the following will show geometrical isomerism?

Q. 12. Anomalous behavior of oxygen is due to its

- (1) small size and high electronegativity
- (2) small size and low electronegativity
- (3) large size and high electronegativity
- (4) large size and low electronegativity
- **Q. 13.** Alkyl halide is converted into alkyl isocyanide by reaction with
 - (1) NaCN (2) AgCN
 - (3) NH_4CN (4) KCN
- **Q. 14.** A reagent which gives brilliant red precipitate with Nickel ions in basic medium is
 - (1) dimethyl glyoxime
 - (2) meta-dinitrobenzene
 - (3) sodium nitroprusside
 - (4) neutral FeCl₃
- **Q. 15.** On passing a gas, 'X', through Nessler's regent, a brown precipitate is obtained. The gas 'X' is
 - (1) Cl_2 (2) H_2S
 - (3) CO₂ (4) NH₃
- **Q. 16.** Phenol treated with chloroform in presence of sodium hydroxide, which further hydrolyzed in presence of an acid results
 - (1) Benzene-1, 2-diol
 - (2) Benzene-1, 3-diol
 - (3) 2-Hydroxybenzaldehyde
 - (4) Salicylic acid
- Q. 17. Match List I with List II :

List- I (Spectral Series for Hydrogen)	List-II (Spectral Region / Higher Energy State)
(a) Lyman	(i) Infrared region
(b) Balmer	(ii) UV region
(c) Paschen	(iii) Infrared region
(d) Pfund	(iv) Visible region
Choose the correct a	nswer from the option

Choose the correct answer from the options given below :

- (1) a-i, b-iii, c-ii, d-iv (2) a-ii, b-iii, c-i, d-iv
- (3) a-ii, b-iv, c-iii, d-i (4) a-i, b-ii, c-iii, d-iv

Q. 18. Match List I with List II :

List- I (Compound)	List-II (pK _a value)
(a) Ethanol	(i) 10.0
(b) Phenol	(ii) 15.9
(c) m-Nitrophenol	(iii) 7.1
(d) p-Nitrophenol	(iv) 8.3

Choose the correct answer from the options given below :

- (1) a-i, b-ii, c-iii, d-iv
- (2) a-ii, b-i, c-iv d-iii
- (3) a-iii, b-iv, c-i, d-ii
- (4) a-iv, b-i, c-ii, d-iii
- **Q. 19.** Identify the reagents used for the following conversion :

- (1) $A = LiAlH_4$, $B = NaOH_{(aq)}$, $C = NH_2 NH_2/KOH$, ethylene glycol
- (2) A = DIBAL-H, $B = NaOH_{(aq)}$, $C = NH_2-NH_2/KOH$, ethylene glycol
- (3) $A = DIBAL-H, B = NaOH_{(alc)}, C = Zn/HCl$
- (4) $A = LiAlH_4$, $B = NaOH_{(alc)}$, C = Zn/HCl
- **Q. 20.** Chromatographic technique/s based on the principle of differential adsorption is/are
 - a. Column chromatography
 - b. Thin layer chromatography
 - c. Paper chromatography

Choose the most appropriate answer from the options given below:

(1) b only	(2)	a only
(3) a & b only	(4)	c only

Section B

- **Q. 21.** The total number of anti bonding molecular orbitals, formed from 2s and 2p atomic orbitals in a diatomic molecule is
- **Q. 22.** Standard enthalpy of vapourisation for CCl_4 is 30.5 kJ mol⁻¹. Heat required for vapourisation of 284 g of CCl_4 at constant temperature is kJ. (Given molar mass in 1 gmol⁻¹; C = 12, Cl = 35.5)
- **Q. 23.** The total number of 'Sigma' and 'Pi' bonds in 2-formylhex-4-enoic acid is
- **Q. 25.** The oxidation number of iron in the compound formed during brown ring test for NO_3^- ion is
- **Q. 26.** The half-life of radioisotope bromine -82 is 36 hours. The fraction which remains after one day is $\times 10^{-2}$. (Given antilog 0.2006 = 1.587)

(Given atomic mass of Au = 197)

- **Q. 28.** Molality of 0.8 M H_2SO_4 solution (density 3 1.06 g cm⁻³) is × 10⁻³ m.
- **Q. 29.** The total number of molecules with zero dipole moment among CH_4 , BF_3 , H_2O , HF, NH_3 , CO_2 and SO_2 is
- **Q. 30.** The following concentrations were observed at 500 K for the formation of NH₃ from N₂ and H₂. At equilibrium; $[N_2] = 2 \times 10^{-2}$ M, $[H_2] = 3 \times 10^{-2}$ M and $[NH_3] = 1.5 \times 10^{-2}$ M. Equilibrium constant for the reaction is

Chemistry			
Q. No.	Answer	Topic Name	Chapter Name
1	(4)	Electronic Configuration of f Block	d and f Block Elements
2	(4)	Properties of d Block Element	d and f Block Elements
3	(4)	Diazotization Reaction	Haloalkanes and Haloarene
4	(2)	IUPAC Naming	Organic Chemistry Some Basic Principle and Technique
5	(4)	Methods of Preparation	Alcohol Phenol Ether
6	(4)	Ionization Energy	Periodic Properties
7	(1)	Negative Electron Gain Enthalpy	Periodic Properties
8	(4)	Acidic Character	Hydrocarbon
9	(1)	Polysacchrides	Biomolecule
10	(2)	IUPAC Naming of Coordination Compound	Co ordination Compound
11	(4)	Geometrical Isomerism	Organic Chemistry Some Basic Principle
12	(1)	Oxygen Family	p block
13	(2)	Nucleophillic Subsitution Reaction	Haloalkanes and Haloarene
14	(1)	Qualitative Analysis	Qualitative Analysis
15	(4)	Nitrogen Family	p block Element
16	(3)	Reimer Tiemann Reaction	Alcohol Phenol Ether
17	(3)	Line Spectra of Hydrogen Atom	Atomic Structure
18	(2)	Acidic Character of Phenol	Alcohol Phenol Ether
19	(3)	Methods of Preparation of Aldehyde	Aldehyde, Ketone and carboxylic Acid
20	(3)	Chromatography	Organic Chemistry Some Basic Principle and Technique
21	[4]	Molecular Orbital Theory	Chemical Bonding
22	[56]	Enthalpy of Vapourization	Thermodynamics
23	[22]	Sigma and pi Bond	Chemical Bonding
24	[4]	Equivalent Concept	Some Basic Concept of Chemistry
25	[1]	Oxidation State	Redox Reaction
26	[63]	Half life Time	Chemical Kinetics
27	[2]	Faraday Law	Electrochemistry
28	[815]	Molarity	Solution
29	[3]	Dipole Moment	Chemical Bonding
30	[417]	Equillibrium Constant	Chemical Equillibrium

Answer Key

JEE (Main) SOLVED PAPER

ANSWERS WITH EXPLANATIONS

Section A

1. Option (4) is correct.

Electronic configuration of Europium

$$Eu = [Xe]4f^{7}6s^{2}$$
$$Eu^{2+} = [Xe]4f^{7}$$

But common oxidation state of lanthanide is +3.

 $Eu^{2+} \rightarrow Eu^{3+} + e^{-}$ ÷.

So it acts as strong reducing Agent.

2. Option (4) is correct.

Zn, Cd and Hg have low enthalpy of atomization. So statement Ist is wrong.

Zn, Cd do not show variable oxidation state, Hg show +I and +II oxidation state. So statement is correct.

In Zn, Cd, Hg are diamagnetic in nature in +2 oxidation state. Zn, Cd and Hg are called soft metal due to their fully filled *d*-orbital. So option 4 is correct.

3. Option (4) is correct.

4. Option (2) is correct.

- 5. Option (4) is correct.
 - Allylic subsitution will take place at high (1) temperature

(2) During Hoffmann Bromide Reaction amine having less than one carbon atom as compare to amide is formed.

 29^{th}

2024

January Shift 2

$$CH_3 - CH_2 - C - NH_2 + Br + 4NaOH \longrightarrow$$

 $CH_3CH_2NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$

Alcohol with same no. of carbon Atom is (3) formed (incorrect)

(4)
$$CH_{3}CH_{2}CH_{2}NH_{2} \xrightarrow{HNO_{2},O^{\circ}C} H_{2}O$$

$$CH_{3}CH_{2}CH_{2}OH + N_{2} + HCI$$

$$Markounikov_{2} \xrightarrow{CH_{3}} I$$

$$I$$

$$(Correct)$$

6. Option (4) is correct.

 $N(7) - 1s^2 2s^2 2p^3$ (half-filled electronic configuration) since half filled electronic configuration are stable, So large amount of energy is required to remove electron.

7. Option (1) is correct.

In case of halogen order of -ve electron gainenthalpy

Cl > F > Br > I

In case of oxygen family order of -ve electron gainenthalpy

O < S > Se > Teor S > Se > Te > 0

8. Option (4) is correct. $CH \equiv C - H \rightarrow CH \equiv C_{H}^{\ominus} + H^{\oplus}$

$$CH_{2} = CH_{2} \rightarrow CH_{2} = CH^{\Theta} + H^{\oplus}$$

$$\downarrow^{sp^{2}}$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$CH_{3} - C - H \rightarrow CH_{3} - C^{\Theta} + H^{\oplus}$$

$$\mid^{l}$$

$$CH_{3} \qquad CH_{3} + I \text{ effect}$$

$$CH_{3} - CH_{3} \rightarrow CH_{3} - CH_{2}^{\Theta} + H^{\oplus}$$

since sp hybridization % s character is high so electronegativity is high. ∴ Acidic character

c < d < b < a

- 9. Option (1) is correct.
 - Starch consist α-Glucose as monomer unit. a-ii
 - Cellulose consist β-Glucose as monomer unit. b-iii
 - Protein are polymer of α -amino acids. d-iv
 - Nucleic Acids are macromolecule of nucleotide. c-i

a-ii, b-iii, d-iv, c-i

10. Option (2) is correct.

+1 x -2 $K_2 MnO_4$ Potassium tetra oxidomagnate (VI) +2 + x - 8 = 0

$$x - 8 = 0$$
$$x = 6$$

11. Option (4) is correct. Geometrical isomers of CHBr are–

- Br C Br Br C H
- 12. Option (1) is correct.
 Oxygen shows anomalous behaviour due to small size and high electronegativity.
 12. Option (2) is correct.
- **13.** Option (2) is correct. $R - X + AgCN \rightarrow R - N \equiv C + AgX$
- 14. Option (1) is correct. Ni²⁺ DMG $\xrightarrow{\text{Basic}}$ [Ni(DMG)₂]

15. Option (4) is correct. Ammonia on reaction with Nessler's reagent produces brown ppt

16. Option (3) is correct.

Br

Mechanism:

20. Option (3) is correct.

Column Chromatography and thin layer chromatography is based on differential adsorption. Paper chromatography is based on principle of portion.

Section B

21. Correct answer is [4].

So all antibonding are ($\overset{*}{\sigma}$ 2S, $\overset{*}{\pi}$ 2P*x*, $\overset{*}{\pi}$ 2P*y*, $\overset{*}{\sigma}$ 2P*z*)

22. Correct answer is [56.24 kJ].

no. of moles =
$$\frac{\text{Given Mass}}{\text{Moler Mass}} = \frac{284}{154} =$$

Enthalpy of vaporisation for $CC1_4 = 30.5$ KJ(mol)

... Total enthalpy of vaporisation

$$= \frac{284}{154} \times 30.5 = 56.24 \text{ kJ}$$

23. Correct answer is 22.

No. of Pi bond = 3 Total = 19 + 3 = 22No. of σ bond = 19

24. Correct answer is [4].

g eqn. of NaOH = g eqn. of O.A $n_f \times N_1 \times V_1 = n_f \times M_2 \times V_2$ $25 \times M = 0.5 \times 50 \times 2$ M = 2 mol litreweight of NaOH present in some $= 2 \times 50 \times 40 \times 10^{-3} = 4 \text{g}$

25. Correct answer is [1].

The compound formed during brown ring test is $[Fe(H_2O)_5(NO)]^+[SO_4]^{\ominus}$ x + 0 + 0 = +1 x = 1 $\therefore 0.5 \text{ of iron is } +1.$

 $= 814.9 \times 10^{-3} = 815 \times 10^{-3}$

$$K_{\rm C} = \frac{[\rm NH_3]^2}{[\rm N_2][\rm H_2]^3}$$
$$= \frac{[\rm Conc. of Produes]^{\rm Stoichiometric coeff}}{[\rm Conc. of Reactant]^{\rm Stoichiometric coeff}}$$
$$= \frac{(1.5 \times 10^{-2})^2}{(2 \times 10^{-2})(3 \times 10^{-2})^3}$$
$$= 0.04166 \times 10^4$$
$$= 416.6$$

$$= 417$$

Η

Н

H

 $\mu = 0$

µ≠0

C - H

Ĥ

—Н

 $(\mu = 0)$

O = C = O $\mu = 0$

 H_{5+}

µ≠0

µ≠0