
(6)

COMPUTER SCIENCE (868)
CLASS 12

There will be two papers in the subject:

Paper I : Theory (3 hours) ……70 marks

Paper II: Practical - 3 hours ... 30 marks

PAPER I (THEORY) – 70 Marks

SECTION A

1.	 Boolean Algebra

	 (a)	 Propositional logic, well formed formulae, truth
values and interpretation of well formed formulae
(wff), truth tables, satisfiable, unsatisfiable and
valid formulae. Equivalence laws and their use in
simplifying wffs.

		 Propositional variables; the common logical connectives
(~ (not)(negation), ∧ (and)(conjunction), ∨ (or)
(disjunction), ⇒ (implication), ⇔ (biconditional);
definition of a well-formed formula (wff); ̀ representation
of simple word problems as wff (this can be used for
motivation); the values true and false; interpretation
of a wff; truth tables; satisfiable, unsatisfiable and valid
formulae.

		 Equivalence laws: commutativity of ∧, ∨; associativity
of ∧, ∨; distributivity; De Morgan’s laws; law of
implication (p ⇒ q ≡ ~p ∨ q); law of biconditional ((p
⇔ q) ≡ (p ⇒ q) ∧ (q ⇒ p)); identity (p ≡ p); law of
negation (~ (~p) ≡ p); law of excluded middle (p ∨~p
≡ true); law of contradiction (p∧~p ≡ false); tautology
and contingency simplification rules for ∧, ∨. Converse,
inverse and contra positive. Chain rule, Modus ponens.

	 (b)	 Binary valued quantities; basic postulates of
Boolean algebra; operations AND, OR and NOT;
truth tables.

	 (c)	 Basic theorems of Boolean algebra (e.g. duality,
idempotence, commutativity, associativity,
distributivity, operations with 0 and 1, complements,
absorption, involution); De Morgan’s theorem and
its applications; reducing Boolean expressions
to sum of products and product of sums forms;
Karnaugh maps (up to four variables).

		 Verify the laws of Boolean algebra using truth tables.

Inputs, outputs for circuits like half and full adders,

majority circuit etc., SOP and POS representation;

Maxterms & Minterms, Canonical and Cardinal

representation, reduction using Karnaugh maps and

Boolean algebra.

2. 	Computer Hardware

	 (a)	 Elementary logic gates (NOT, AND, OR, NAND,
NOR, XOR, XNOR) and their use in circuits.

	 (b)	 Applications of Boolean algebra and logic gates

to half adders, full adders, encoders, decoders,

multiplexers, NAND, NOR as universal gates.

		 Show the correspondence between Boolean methods and

the corresponding switching circuits or gates. Show that

NAND and NOR gates are universal by converting

some circuits to purely NAND or NOR gates.

SECTION B

The programming element in the syllabus (Sections B
and C) is aimed at algorithmic problem solving and not

merely rote learning of Java syntax. The Java version used

should be 5.0 or later. For programming, the students can

use any text editor and the javac and java programs or

any other development environment: for example, BlueJ,
Eclipse, NetBeans etc. BlueJ is strongly recommended for

its simplicity, ease of use and because it is very well suited

for an ‘objects first’ approach.

3. 	Implementation of algorithms to solve problems

	 The students are required to do lab assignments in

the computer lab concurrently with the lectures.
Programming assignments should be done such that

each major topic is covered in at least one assignment.

Latest Syllabus

(7)

Latest Syllabus
Assignment problems should be designed so that

they are sufficiently challenging. Students must

do algorithm design, address correctness issues,

implement and execute the algorithm in Java and

debug where necessary.

	 Self explanatory.

4. Programming in Java (Review of Class XI Sections B
	 and C)

Note that items 4 to 13 should be introduced almost
simultaneously along with classes and their definitions.

While reviewing, ensure that new higher order problems
are solved using these constructs.

5. Objects

	 (a)	 Objects as data (attributes) + behaviour (methods);
object as an instance of a class. Constructors.

	 (b)	 Analysis of some real-world programming
examples in terms of objects and classes.

	 (c)	 Basic input/output using Scanner and Printer
classes from JDK; input/output exceptions.
Tokens in an input stream, concept of whitespace,
extracting tokens from an input stream (String
Tokenizer class).

6. 	Primitive values, Wrapper classes, Types and casting

Primitive values and types: byte, int, short, long, float,
double, boolean, char. Corresponding wrapper classes
for each primitive type. Class as type of the object.
Class as mechanism for user defined types. Changing
types through user defined casting and automatic type
coercion for some primitive types.

7. 	Variables, Expressions

	 Variables as names for values; named constants
(final), expressions (arithmetic and logical) and their
evaluation (operators, associativity, precedence).
Assignment operation; difference between left hand
side and right hand side of assignment.

8. 	Statements, Scope

	 Statements; conditional (if, if else, if else if, switch
case, ternary operator), looping (for, while, do while,
continue, break); grouping statements in blocks, scope
and visibility of variables.

9.	 Methods

	 Methods (as abstractions for complex user defined
operations on objects), formal arguments and actual
arguments in methods; different behaviour of primitive
and object arguments. Static method and variables. The
this Operator. Examples of algorithmic problem solving
using methods (number problems, finding roots of
algebraic equations etc.).

10. Arrays, Strings

	 Structured data types – arrays (single and multi-
dimensional), address calculations, strings. Example
algorithms that use structured data types (e.g.
searching, finding maximum/minimum, sorting
techniques, solving systems of linear equations,
substring, concatenation, length, access to char in
string, etc.).

	 Storing many data elements of the same type requires
structured data types – like arrays. Access in arrays is
constant time and does not depend on the number of
elements. Address calculation (row major and column major),
Sorting techniques (bubble, selection, insertion). Structured
data types can be defined by classes – String. Introduce
the Java library String class and the basic operations on
strings (accessing individual characters, various substring
operations, concatenation, replacement, index of operations).
The class StringBuffer should be introduced for those
applications that involve heavy manipulation of strings.

11. Recursion

	 Concept of recursion, simple recursive methods
(e.g. factorial, GCD, binary search, conversion of
representations of numbers between different bases).

	 Many problems can be solved very elegantly by observing
that the solution can be composed of solutions to ‘smaller’
versions of the same problem with the base version having a
known simple solution. Recursion can be initially motivated
by using recursive equations to define certain methods. These
definitions are fairly obvious and are easy to understand. The
definitions can be directly converted to a program. Emphasize
that any recursion must have a base case. Otherwise, the
computation can go into an infinite loop.

	 The tower of Hanoi is a very good example of how recursion
gives a very simple and elegant solution where as non-
recursive solutions are quite complex.

(8)

SECTION C

Inheritance, Interface, Polymorphism, Data structures,
Computational complexity

12. Inheritance, Interfaces and Polymorphism

	 (a)	 Inheritance; super and derived classes; member
access in derived classes; redefinition of variables
and methods in subclasses; abstract classes; class
Object; protected visibility. Subclass polymorphism
and dynamic binding.

		 Emphasize inheritance as a mechanism to reuse a class
by extending it. Inheritance should not normally be
used just to reuse some methods defined in a class but
only when there is a genuine specialization (or subclass)
relationship between objects of the super class and that of
the derived class.

	 (b)	 Interfaces in Java; implementing interfaces through
a class; interfaces for user defined implementation
of behaviour.

		 Motivation for interface: often when creating reusable
classes some parts of the exact implementation can only
be provided by the final end user. For example, in a class
that sorts records of different types the exact comparison
operation can only be provided by the end user. Since only
he/she knows which field(s) will be used for doing the
comparison and whether sorting should be in ascending
or descending order be given by the user of the class.

		 Emphasize the difference between the Java language
construct interface and the word interface often used to
describe the set of method prototypes of a class.

13. Data structures

	 (a) 	 Basic data structures (stack, queue, circular queue,
dequeue); implementation directly through classes;
definition through an interface and multiple
implementations by implementing the interface.
Conversion of Infix to Prefix and Postfix notations.

		 Basic algorithms and programs using the above data
structures.

		 Data structures should be defined as abstract data types
with a well-defined interface (it is instructive to define
them using the Java interface construct).

	 (b)	 Single linked list (Algorithm and programming),
binary trees, tree traversals (Conceptual).

		 The following should be covered for each data structure:

		 Linked List (single): insertion, deletion, reversal,
extracting an element or a sublist, checking emptiness.

		 Binary trees: apart from the definition the following
concepts should be covered: root, internal nodes, external
nodes (leaves), height (tree, node), depth (tree, node),
level, size, degree, siblings, sub tree, completeness,
balancing, traversals (pre, post and in-order).

14.	 Complexity and Big O notation

		 Concrete computational complexity; concept
of input size; estimating complexity in terms of
methods; importance of dominant term; constants,
best, average and worst case.

		 Big O notation for computational complexity; analysis
of complexity of example algorithms using the big O
notation (e.g. Various searching and sorting algorithms,
algorithm for solution of linear equations etc.).

	 PAPER II: PRACTICAL – 30 MARKS

	 This paper of three hours’ duration will be evaluated by
the Visiting Examiner appointed locally and approved
by CISCE.

	 The paper shall consist of three programming problems
from which a candidate has to attempt any one. The
practical consists of the two parts:

	 1. Planning Session

	 2. Examination Session

	 The total time to be spent on the Planning session and
the Examination session is three hours. A maximum of
90 minutes is permitted for the Planning session and 90
minutes for the Examination session.

	 Candidates are to be permitted to proceed to the
Examination Session only after the 90 minutes of the
Planning Session are over.

	 Planning Session

	 The candidates will be required to prepare an algorithm
and a hand written Java program to solve the problem.

Latest Syllabus

(9)

	 Examination Session

	 The program handed in at the end of the Planning
session shall be returned to the candidates. The
candidates will be required to key-in and execute the
Java program on seen and unseen inputs individually
on the Computer and show execution to the Visiting
Examiner. A printout of the program listing including
output results should be attached to the answer
script containing the algorithm and handwritten
program. This should be returned to the examiner. The
program should be sufficiently documented so that the
algorithm, representation and development process
is clear from reading the program. Large differences
between the planned program and the printout will
result in loss of marks.

	 Teachers should maintain a record of all the assignments
done as part of the practical work through the year and
give it due credit at the time of cumulative evaluation
at the end of the year. Students are expected to do a
minimum of twenty-five assignments for the year.

	 EVALUATION:

	 Marks (out of a total of 30) should be distributed as
given below:

Continuous Evaluation

	 Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year.

Programming assignments done
throughout the year (Internal
Evaluation)

10 marks

Programming assignments done
throughout the year (Visiting Examiner)

5 marks

Terminal Evaluation

Solution to programming problem on
the computer

15 marks

Marks should be given for choice of algorithm and
implementation strategy, documentation, correct output
on known inputs mentioned in the question paper, correct
output for unknown inputs available only to the examiner.

NOTE:

Algorithm should be expressed clearly using any standard
scheme such as a pseudo code.

EQUIPMENT

There should be enough computers to provide for a
teaching schedule where at least three-fourths of the time
available is used for programming.

Schools should have equipment/platforms such that all
the software required for practical work runs properly, i.e.
it should run at acceptable speeds.

Since hardware and software evolve and change very
rapidly, the schools may have to upgrade them as required.

Following are the recommended specifications as of now:

The Facilities:

• 	 A lecture cum demonstration room with a
MULTIMEDIA PROJECTOR/ an LCD and O.H.P.
attached to the computer.

•	 A white board with white board markers should be
available.

• 	 A fully equipped Computer Laboratory that allows one
computer per student.

• 	 Internet connection for accessing the World Wide Web
and email facility.

• 	 The computers should have a minimum of 1 GB RAM
and a P IV or higher processor. The basic requirement
is that it should run the operating system and Java
programming system (Java compiler, Java runtime
environment, Java development environment) at
acceptable speeds.

• 	 Good Quality printers.

Software:

•	 Any suitable Operating System can be used.

•	 JDK 6 or later.

•	 Documentation for the JDK version being used.

•	 A suitable text editor. A development environment with
a debugger is preferred (e.g. BlueJ, Eclipse, NetBeans).
BlueJ is recommended for its ease of use and simplicity.



Latest Syllabus

(10)

SAMPLE TABLE FOR PRACTICAL WORK

S.
No.

Unique
Identification

Number (Unique
ID) of the
candidate

Assessment of
Practical File

Assessment of the Practical Examination (To be evalu-
ated by the Visiting Examiner only)

TOTAL MARKS

(Total Marks are
to be added and
entered by the

Visiting
Examiner)
30 Marks

Internal
Evaluation
10 Marks

Visiting
Examiner
5 Marks

Algorithm
3 Marks

Java Program
with internal

Documentation
7 Marks

Hard Copy
(prinout)	

2 Marks

Output
3 Marks

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Name of the Visiting Examiner: _________________________

Signature: __________________________

Date:______________________________

	

Latest Syllabus

